

Experience in developing fire safety science and public safety technology in China: Past, present, and future

Weicheng FAN

Institute of Public Safety Research, Tsinghua University State Key Laboratory of Fire Science, University of Science and Technology of China

2018 Howard W. Emmons Distinguished Lecture 2nd Annual Global Public Safety Symposium New Frontiers in Global Public Safety, Monday, Sept. 17, 2018

Outline

- Developing fire safety science in China
- Challenging problems of fire safety
- Developing public safety technology in China
- Challenging problems of public safety
- Conclusions

My research

1 1970 - 1990

Combustion : Engine combustion, Numerical simulation of combustion

2 1984 - 2003

Fire Safety: Fire dynamics, Fire detection, Fire risk assessment

3 2003 - now

Public Safety: Emergency management, Strategic study of public safety S&T in China

Combustion research (1970 - 1990)

- Interaction of flow, heat and mass transfer and chemical reactions in the combustion chamber
- Combustion process and combustion efficiency of biogas burners
- Computer simulation of parabolic and elliptical combustion processes
- Computer simulation of turbulent combustion process
- A two-fluid model of turbulent combustion

Example: Two-fluid model of turbulence

- Two-fluid model of turbulence: Two types of fluid (with different velocity, temperature and species) co-exist and interact with each other
 - Considering that turbulence can be transformed into non-turbulence by decay and dissipation
 - Considering the heat exchange between the two fluids and the chemical reaction inside the unburnt gases

Learning from combustion scientists

Visiting Prof. Dudley B. Spalding (1979.11 - 82.4)

Prof. Brian Launder and Prof.
Brian Spalding:
We can develop a lot of
boundary work -Interdisciplinary sciences involve
a great space of innovation

Visiting Prof. Brian Launder (1986)

Learning from fire scientists

with Prof. H. W. Emmons

with Dr Kunio Kawagoe

with Prof. P. H. Thomas

Motivation for establishing SKLFS

1987 Daxinganling Wildland Fire—
 Fire Area: 13700km²

Deaths: 197

Establishing SKLFS (1990)

中国科学技术大学 火灾科学实验室 素態-丸和平井和日

Inscription of SKLFS by Premier Peng LI

Discussion with Prof. James Ouintiere and Geoff Cox at SKLFS

Foundation-laying ceremony of SKLFS (1990)

Example: FZN modeling of building fire

• Field-Zone-Network (FZN) modeling methodology

- FZ modeling: use field modeling for the spaces of fire origin with strong ventilation and complicated geometry, and use zone modeling in other spaces of the building.
- FZN modeling: use network modeling in the spaces far away from fire origin.
- Focus: dealing with the interfaces between the contiguous spaces with different models.
- Major merit: simulating fire smoke movement in long and narrow space and multiple rooms

Fig. 4. Structure of the full-scale high-rise building.

Fig. 5. Temperature distribution on different sections in the fire-modeling room.

Example: Duality model of building fire

• Combination of deterministic and probabilistic models

- Considering: the uncertainties of fire occurrence due to the variety of human behaviour , fuel, environment condition and fire source
- The deterministic part: determines the heat release rate of the combustibles, fire dynamics and hazard by experiment and computer modeling.
- The probabilistic part: determines the ignition probability by statistical analysis.
- Serving the fire risk assessment

Fig. 4 Total hazardous probability of probabilistic fire

Example: Developing fire risk assessment method

Fire risk assessment of new terminal of Jinan international airport

Fire risk assessment for steel structure of Beijing opera

Key figures & facts of SKLFS

- State Key Laboratory of Fire Science
- Engineering & Technology Research Center for Thermal Safety, CAS
- Department of Safety Science and Engineering
 - Bachelor, Master, PhD., Training and Consultation.
- National Science Education Base
- Faculty members: 56
 - Professors: 22; Asso. Professors: 18
- Master students: 160; Ph. D students: 120; Postdoctoral: 11

Key figures & facts of SKLFS

Papers publication

- ☑ International journal papers (2000-2016): >2000
- ☑ Papers accepted by IAFSS symposium (2015-2016): > 50

- —— highest among world fire research institutions

Invention patent

- $\square > 150$ invention patents authorized
- Many technologies have been widely used in hundreds of large buildings in China

Outline of SKLFS researches

Fire Formation and Its Propagation

• Fire Formation Mechanism

- Pyrolysis and Ignition Models of Combustibles Under Different Conditions
- ☑ Mechanism of Smoldering and its Transition to Flame

Fire Formation and Its Propagation

• Recognition and Forecasting of Forest Fire

☑ Satellite Remote-sensing Recognition of Forest Fire
 ☑ Self-organization Behavior of Forest Fire
 ☑ Forecasting Large Forest Fires

Fire Formation and Its Propagation

• Fire Propagation and Dynamics

☑ Interaction of Pyrolysis, Phase Change, Fluid Flow, Heat Transfer and Combustion

☑ Nonlinear Dynamical Models of Fire Phenomena

Fire Smoke and Its Toxicity

- Movement of Fire Smoke
- Interaction of Smoke and Fire
- Formation of Toxicity in Smoke
- Effect of Smoke Toxicity to Human Body

Fire Retardant Materials

- Nanometre Fire Retardant Materials
- Fire Retardancy Mechanism of Halogen Free Materials

Intelligent Recognition of Fire Signals

- Characteristics of Light, Smoke (heat, gas and solid particles) and Sound in Fire
- Multi-criteria Fire Signal Recognition Models

Fire Suppression with High Efficiency

- Water Mist and its Characterization
- Gaseous Fire Suppression
- Interaction among Fire Suppression, Fire and Smoke

Fire Safety in Wildland-Urban Interface (WUI) Regions

Extreme Fire Behaviors in Wildland Fires

Crown fire

http://en.wikipedia.org/wiki/Yellowstone_fires_of_1988

 $\ensuremath{\boxdot}$ Transition to burn forest fuels at the canopy level

Fire storm

Firestorm-made thermal column. Fire (1) makes hot air (2) to rise forming storm-winds (3) towards the fires.

[Left] Countryman, C.M. "Mass Fires and Fire Behavior," 1964, 53 pp.
[Right] http://en.wikipedia.org/wiki/Fire_storm

☑ Great convective activity; little outward spread of fire

Conflagration

- [Left] Countryman, C.M. "Mass Fires and Fire Behavior,", 1964, 53 pp.
- [Right] http://www.rivco4.org/web/news/archive/200804/

 \blacksquare Moving fronts with large fire sizes and narrow depth

Spot fire

• Koo, E., et al., International Journal of Wildland Fire, 2010. 19(7): p. 818-843.

 $\ensuremath{\boxtimes}$ Producing numerous ignitions beyond major fire area

Extreme Fire Behaviors in Wildland Fires

Fire merging

- [Left] Viegas, D.X. Forest fires, 6th ISFEH (Slides)
- [Right] Fire merging experiments by group of N. Liu

☑ Significant interactions among multiple fires

Eruptive fire

 Dold, J., et al., Some Forest Fire Related Accidents in Europe, DX Viegas (Ed), JRC, Ispra, 2009.

☑ Typical in canyons or steep slopes; quick acceleration

Fire whirl

- [Left two pictures] Fire whirls reported in news
- [Right two pictures] Fire whirl experiments by group of N. Liu

$\ensuremath{\boxdot}$ Concentrated vortex structure with combustion

Jump fire

• Viegas, D.X., et al. International Journal of Wildland Fire 21(7): 843-856 (2012).

$\ensuremath{\boxdot}$ Merging of fire fronts with a small intersection angle

• Fire Safety in High-rise Buildings

Wind effect on compartment fire

 $H_{0,w}^L$

 $H_{0,w}^L$

• Fire Hazards in Energy Systems

• Fire Safety of Historic Buildings

Ancient town fire in Yunnan, Jan 2014

• Fire Safety of Historic Buildings

Institute of Public Safety Research (IPSR)

- Found in Tsinghua university, 2003.
- Leading research center on public safety in China

Institute of Public Safety Research (IPSR)

Multidisciplinary Institute with 14 Key research bodies

- <u>*Institute of Safety Science and Technology</u> (Engineering Physics)
- State Administration of Work Safety Key Lab on Fire Safety (Eng. Physics)
- Laboratory of Particle and Radiation Imaging (Engineering Physics)
- Center for Nuclear Safety (Nuclear Technology)
- Institute of Disaster Prevention and Mitigation (Civil Engineering)
- Department of Construction Safety Management (Civil Engineering)
- Institute of Hydraulic and Hydropower Engineering (Civil Engineering)
- Center for Crisis Management Research (Public Policy & Management)
- Center for Chemical Processing Safety (**Chemical Engineering**)
- Laboratory of Control and Simulation of Power Systems (Automotive Eng.)
- Center for Safety Eng. and Technology Research (Aeronautic & Aerospace)
- Institute of Thermal Engineering (Thermal Engineering)
- Institute of building Environment and Facility Eng. (Architecture Science)
- Institute of Software Theory and System (Software)

Key research directions of IPSR

Academic Influence

- Chairman member of Asia-Pacific Association of Public Safety Science and Technology
- Chairman member of Chinese Association of Public Safety
- Training base of national and municipal emergency management cadres
- Beijing Key Laboratory of Comprehensive Emergency Response Science
- Key Laboratory of Work Safety State Administration of Work Safety

International R&D Collaboration

objects which receive the hazardous actions

Internet of Things

Video surveillance

On-Site Mobile System

Prediction & Analysis

Emergency Response and Management

Emergency Response and Management

Intelligent analysis for decision making

Prevention & Emergency Preparedness

Technical Support

Monitoring & Early Warning Emergency Response & Rescue Post-disaster Reconstruction

China's National / Provincial / City EMR Platform

China National Emergency Response Platform

- 1 National center
- 31 reginal center

HaiNan

National Early Warning Information Release System

National emergency pre-warning information release monitoring platform

- Emergency public pre-warning information released through China Meteorological forecast systems
- Beijing public emergency warning information release system
- Tianjin public emergency warning information release system
- Guangxi Meteorological Disaster Emergency Warning Information Release System
- Hebei Province Meteorological Service Center Early Warning Information Release System
- Ningxia Emergency Warning Information Release System

Public safety management system for Ecuador (ECU 911)

Ecuador ECU-911

Ecuador ANT

2013.12.28 22:14:28

Trend in public safety

Challenge of Public Safety

New goal of Public Safety

Resilience

Sensing in resilience with Internet of Everything

Prediction in resilience for active risk

assessment

Precaution in resilience with deep integration of data and knowledge

Key problems of public safety

1 Modeling of emergency with evolutionary dynamics and information processing

2 Resilience in public safety

③ **Psychology and behavior of individual and group** under emergency

(4) New decision making theory of emergency

(5) Emergency response with advanced technology

Concluding Remarks

- Public safety relates directivity to human life, social and economical development.
- Science, technology, management and culture coordinately support public safety.
- International exchange and cooperation are needed for promotion of science & technology of public safety

Contact

Weicheng Fan (<u>wfan@tsinghua.edu.cn</u>)Open discussion

2nd Annual Global Public Safety Symposium New Frontiers in Global Public Safety, Monday, Sept. 17, 2018